If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-10+1=0
We add all the numbers together, and all the variables
2x^2-9=0
a = 2; b = 0; c = -9;
Δ = b2-4ac
Δ = 02-4·2·(-9)
Δ = 72
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{72}=\sqrt{36*2}=\sqrt{36}*\sqrt{2}=6\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{2}}{2*2}=\frac{0-6\sqrt{2}}{4} =-\frac{6\sqrt{2}}{4} =-\frac{3\sqrt{2}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{2}}{2*2}=\frac{0+6\sqrt{2}}{4} =\frac{6\sqrt{2}}{4} =\frac{3\sqrt{2}}{2} $
| 3-2z/z+1-z²/(z+1)²=0 | | 4−5v=54 | | 123+45+x=35 | | 2-9=14-n | | 6x+10x-5x=330 | | 3(x-10)+2(x+5)=0 | | p–3=3p–1 | | 3.4x−8.02=8.3 | | 3-10=n-50 | | 10^x3=90 | | 3x^2-7x=11 | | x/3+1=18 | | 6x-5-3x=2-4x | | 0.7(x-4)=24 | | 2^x3=90 | | 1/x-2=2x+1/x²-4 | | 2x1x3=90 | | 3(2x–3)=3x+11 | | q-26/25=39/36 | | -7.2(x-2.5)=21.6 | | 2^x+1=12 | | 6-(x*3)=-18 | | q-5+1/5=6+3/6 | | 7.7a+15=107.4 | | 4d-11=15d | | 3(x-10+2(x+5)=0 | | s-15=15.04 | | x^2+6x+5=160 | | s-$15=$15.04 | | (1/4)^x=-2x-3 | | 9c2-18c+8=0 | | 360/x=18 |